Стратегический менеджмент

Стратегический менеджмент рассматривает проблемы роста и выживания крупных организаций. Значение стратегического поведения, позволяющее фирме выживать в конкурентной борьбе в долгосрочной перспективе, резко возросло в последние десятилетия.

Сущность трендовых моделей и их использование для прогнозов

В самой простой форме индекс сезонности рассчитывается как отношение среднего уровня за соответствующий месяц к общему среднему значению показателя за год (в процентах). Все другие известные методы расчета сезонности различаются по способу расчета выровненной средней. Чаще всего используются либо скользящая средняя, либо аналитическая модель проявления сезонных колебаний.

Большинство методов предполагает использование компьютера.

Относительно простым методом расчета индекса сезонности является метод центрированной скользящей средней.

Используя метод скользящей средней, необходимо последовательно осуществить следующие этапы:

. решить, данные, за сколько лет должны быть включены в расчет. Можно использовать данные за один год, но для большей достоверности расчетов лучше использовать данные, по крайней мере, за два года, а если сезонные колебания значительны, - то и более.

. рассчитать средний объем продаж за месяц по данным;

. рассчитать индекс сезонности для конкретного месяца;

. повторить этапы 2 и 3 для этого же месяца следующего года;

. определить средний индекс в этом месяце по данным за два года;

. рассчитать соответствующие индексы для всех месяцев;

. обобщить данные о силе колеблемости показателей динамического ряда из-за их сезонного характера. При этом используется среднее квадратическое отклонение индексов сезонности (в процентах) от 100%.

Сравнение средних квадратических отклонений, вычисленных за разные периоды времени, показывает сдвиги в сезонности.

Другим методом расчета индексов сезонности, часто используемым в различного рода экономических исследованиях, является метод сезонной корректировки, известный в компьютерных программах как метод переписи (Census Method II). Он является своего рода модификацией метода скользящих средних. Специальная компьютерная программа элиминирует трендовую и циклическую компоненты, используя целый комплекс скользящих средних. Кроме того, из средних сезонных индексов удалены и случайные колебания, поскольку под контролем находятся крайние значения признаков.

Расчет индексов сезонности является первым этапом в составлении прогноза. Обычно этот расчет проводится вместе с оценкой тренда и случайных колебаний и позволяет корректировать прогнозные значения показателей, полученных по тренду. При этом необходимо учитывать, что сезонные компоненты могут быть аддитивными и мультипликативными.

Таким образом, временной ряд, характеризующий величину цикла систематических колебаний, можно использовать для прогнозирования с использованием аддитивных и мультипликативных моделей.

Итак, временной ряд - это последовательность наблюдений некоторой величины в последовательные моменты времени.

Аддитивная модель представляет собой обобщение множественной регрессии, которая является частным случаем общей линейной модели.

Аддитивную модель можно представить в виде формулы:

F = T + S + E

где F - прогнозируемое значение; Т - тренд; S - сезонная компонента; Е - ошибка прогноза.

Применение мультипликативных моделей обусловлено тем, что в некоторых временных рядах значение сезонной компоненты представляет собой определенную долю трендового значения. Эти модели можно представить формулой:

F = T x S x E

На практике отличить аддитивную модель от мультипликативной можно по величине сезонной вариации. Аддитивной модели присуща практически постоянная сезонная вариация, тогда как у мультипликативной модели она возрастает, или убывает. Графически это выражается в изменении амплитуды колебания сезонного фактора. Это показано на рис. 1.

Рисунок 1.

Аддитивная и мультипликативная модели прогнозирования

Если бы на изучаемом интервале времени коэффициенты уравнения регрессии, которое описывает тренд, оставались бы неизменными, то для построения прогноза достаточно было бы использовать метод наименьших квадратов. Однако в течение исследуемого периода коэффициенты могут меняться. Естественно, что в таких случаях более поздние наблюдения несут большую информационную ценность по сравнению с более ранними наблюдениями, а, следовательно, им нужно присвоить наибольший вес. Именно таким принципам и отвечает метод экспоненциального сглаживания, который может быть использован для краткосрочного прогнозирования объема продаж. Расчет осуществляется с помощью экспоненциально-взвешенных скользящих средних:

Перейти на страницу: 1 2 3