Стратегический менеджмент

Стратегический менеджмент рассматривает проблемы роста и выживания крупных организаций. Значение стратегического поведения, позволяющее фирме выживать в конкурентной борьбе в долгосрочной перспективе, резко возросло в последние десятилетия.

Расчет математического ожидания и среднеквадратического отклонения сигнала ошибки

Замена нелинейного звена линеаризованной моделью позволяет использовать принцип суперпозиции - провести раздельный анализ преобразования системой детерминированных и случайных составляющих входных сигналов. Особенность применения принципа суперпозиции на основе статистической линеаризации состоит в том, что для случайных составляющих нелинейное звено заменяется безынерционным звеном с коэффициентом k1, а для детерминированных - безынерционным звеном с коэффициентом k0 (при нечетной нелинейности) или постоянным сигналом 0.

Определяемые по полученным выше формулам коэффициенты статистической линеаризации оказываются функциями моментов распределения сигналов на входе нелинейности, которые, в свою очередь, вычисляются через передаточные функции системы, включающей в себя линеаризованное звено, то есть зависят от коэффициентов статистической линеаризации. Вследствие этого расчет стационарного процесса в статистически линеаризованной системе сводится к решению системы нелинейных алгебраических уравнений, требующему применения численных методов.

Для заданной системы (рисунок 1) передаточная функция линейной части:

.

Задающее воздействие изменяется по закону g(t)=g1 (t). На входе действует случайная помеха F(t) с нулевым математическим ожиданием и спектральной плотностью . Требуется определить математическое ожидание и среднеквадратическое отклонение сигнала ошибки в установившемся процессе.

Выделим детерминированную и случайную составляющие сигнала ошибки: . С учетом характера входных сигналов и в соответствии с принципом суперпозиции составляющие сигнала ошибки в линеаризованной системе будут определяться следующим образом:

mx(t)= xgуст, .

Для расчета детерминированной составляющей сигнала ошибки после линеаризации используется структурная схема (рис. 4, а), а для расчета центрированной случайной составляющей - структурная схема (рис. 4, б), где

,

=k1(mx,σx).

Для полученных структурных схем искомые характеристики сигнала ошибки определяются следующим образом: mE=mx, DE=DY.

При расчете детерминированной составляющей передаточная функция замкнутой системы по ошибке имеет вид:

.

В результате: .

Среднеквадратическое отклонение сигнала ошибки в рассматриваемой задаче полностью определяется возмущающим воздействием и находится через дисперсию выходного сигнала и передаточную функцию замкнутой системы по возмущению, которая в рассматриваемом примере примет вид:

.

В результате: ,

Коэффициенты полиномов (1) примут вид:

a0=T1T2, , ,

, b0=0, b1=0, .

Определители (3) будут иметь третий порядок и получаются следующими:

=

.

В результате:

При заданных k, T и c для расчета характеристик ошибки необходимо решить систему нелинейных алгебраических уравнений:

mE=,

,

,

.